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Abstract Polyhedral links, interlinked and interlocked architectures, have been pro-
posed for the description and characterization of DNA and protein polyhedra. In this
paper, we study the topological chirality of a type of DNApolyhedral links constructed
by the strategy of “n-point stars” and a type of protein polyhedral links constructed by
“three-cross curves and untwisted double-line” covering. Furthermore, we prove that
links corresponding to bipartite plane graphs have antiparallel orientations, and under
these orientations, their writhes are not zero. As a result, the type of double crossover
DNA polyhedral links are topologically chiral. We also prove that the unoriented link
corresponding to a connected, even, bipartite plane graph always has self-writhe 0.
Using the Jones polynomial for unoriented links we derive two simple criteria for
chirality of unoriented alternating links with self-writhe 0. By applying this criterion
we show that 3-regular protein polyhedral links are also topologically chiral. Topo-
logical chirality always implies chemical chirality, hence the corresponding DNA and
protein polyhedra are all chemically chiral. Our chiral criteria may be used to detect
the topological chirality of more complicated DNA and protein polyhedral links that
may be synthesized by chemists and biologists in the future.
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1 Introduction

Chirality is an important feature of all biomacromolecules, which are responsible for
the structure and chemical regulation of living cells and DNA. Most biomolecules,
such as amino acids, sugars, RNA, DNA and proteins are chiral. Knotted DNA and
proteins are intriguing. Scientists have found and synthesized many DNA and protein
knots and links. For example, DNA trefoil [1], DNA Whitehead link and 62 knot [2],
and many more examples of DNA knots can be found in [3,4]; protein figure-eight
knot [5], protein 52 knot [6], and in fact, 3–6 crossing twist knots have been found in
protein. For a list of such links, see [7].

In the last 20years or so, many DNA and protein biomolecules with the shape
of polyhedron have been synthesized and found. For example, DNA cube [8], DNA
tetrahedron [9], DNA octahedron [10], DNA truncated octahedron [11], DNA bipyra-
mid [12], DNA dodecahedron [13]. They are all constructed by means of “n-branched
curves and even-twisted double-line” covering and the chirality of their corresponding
polyhedral linkswas studied in [14]. In recent several years, a type ofmore complicated
DNApolyhedra have been reported in [15–18]. They are all constructed by the strategy
of “n-point stars” and called double crossover DNA polyhedra in [19]. Similar DNA
molecular structures can be found in [20,21]. In [15], the chirality of double crossover
DNA octahedron was considered, but in general the chirality of this type of polyhedra
has not been systematically analyzed. Proteins as building blocks were also used to
form polyhedral structures. As far as we know, only one protein polyhedral structure
has been found in the laboratory, that is the HK97 capsid [22]. Such polyhedra can
be modelled mathematically by 3-regular polyhedral links via “three-cross curves and
untwisted double-line” covering [23,24]. The chirality of 3-regular polyhedral links
was studied in [25].

We recall that a molecule is chemically chiral if its structure cannot be deformed
into its mirror-image structure by realizable intramolecular motions. If we view a
molecular structure as a rigid object and can deform it to its mirror image by moving
it in the three-dimensional space, we call it geometrically achiral and geometrically
chiral otherwise. If we view a molecular structure as a completely elastic object and
can deform it to its mirror image, we call it topologically achiral and topologically
chiral otherwise. The relation among these three chiralities is summarized as follows:
topological chirality implies chemical chirality, chemical chirality implies geometrical
chirality, and each inverse does not hold. We refer the readers to [26,27] for details.
The purpose of this paper is to consider topological chirality of double crossover
DNA polyhedral links and 3-regular protein polyhedral links. We shall ignore both the
DNA and protein sequence and use the orientation of the two backbone strands of the
dsDNA to orient DNA polyhedral links. The term “dsDNA” is defined as the double
stranded DNA. Thus we consider DNA polyhedral links as oriented links and protein
polyhedral links as unoriented ones.

Many tools have been used to study the chirality of DNA and protein knots and
links. In [28], the authors introduced an uni-variable polynomial from the adjacency
matrix of a link diagram. The point symmetry group was used to detect the chiral-
ity in [23] and the writhe was applied to detect the topological chirality in [24,29].
The HOMFLY polynomial [30,31] is more powerful, but difficult to compute.
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See [29,32–36]. The tool we shall use is the celebrated Jones polynomial [37] for
oriented links and its counterpart for unoriented links. The advantage is that some-
times the Jones polynomial can deal with the chirality of alternating links withwrithe 0
or self-writhe 0. The form of the Jones polynomial we shall take is Kauffman’s version,
formed from the writhe (or self-writhe) and the Kauffman bracket polynomial [38].
However, computing the Jones polynomial of links with large number of crossings
such as double crossover DNA polyhedral links and 3-regular protein polyhedral links
is also very difficult, we shall not do this. Our aim is to deduce some easily computable
chirality criteria from the symmetry of Jones polynomial of achiral links.

A polyhedron P is a solid inR3, enclosed by a number of polygons (faces), any pair
of polygons having at most one side in common, while three or more polygons having
at most one vertex in common. Note that the surface of a polyhedron is topologically
homeomorphic to the sphere S2. Thus the graph consisting of vertices and edges of
a polyhedron, i.e the 1-skeleton, is a planar graph via the well-known stereographic
projection [39]. Accordingly, DNA and protein polyhedral links in three-dimensional
space can be deformed into a plane to become so-called link diagrams. It is well known
that there is an one-to-one correspondence between link diagrams and signed plane
graphs [40–42].

In this paper we observe that link diagrams corresponding to bipartite plane graphs
have antiparallel orientations; the absolute value of its writhe is equal to the number of
edges of the bipartite plane graph. Since the writhe is not zero, the link corresponding
to a bipartite graph with antiparallel orientation is chiral. As an application, the double
crossover DNA polyhedral links are topologically chiral. As for the 3-regular polyhe-
dral links, its self-writhe is 0, so the self-writhe chirality detector is invalid. We derive
some simple chirality criteria for unoriented links with 0 self-writhe from the Jones
polynomial. Using these criteria, we show that 3-regular protein polyhedral links are
also topologically chiral. In addition, we prove that link diagrams corresponding to
even, bipartite, plane graphs always have self-writhe 0.

2 Preliminaries

In this section, we give preliminary results that are all well known for knot theorists in
the field of combinatorial knot theory. These results are necessary for us to give strict
chirality criteria in Sect. 3.

2.1 Basic concepts, terminology and notations

A graph G is a pair of sets V (G) and E(G), where V (G) is a non-empty finite set (of
vertices) and E(G) is a multi-set of unordered pairs (x, y) (not necessarily distinct)
of vertices called edges. An edge with unordered pair (x, x) is called a loop. A graph
G is said to be connected if, for any two distinct vertices u, v ∈ V (G), there is a path
u = u0u1u2 · · · ul = v, where ui (i = 0, 1, . . . , l) are all distinct and (ui−1, ui ) is an
edge for i = 1, 2, . . . , l. A component of a graphG is a subgraph that is connected and
is not properly contained in any other connected subgraph of G. A bridge of a graph
G is an edge whose removal would increase the number of connected components of
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G. A graph is said to be trivial if it consists of only an isolated vertex without loops.
A graph is called reduced if it is connected, loopless and bridgeless.

A graph is planar if it can be embedded in the plane; that is, it can be drawn on the
plane so that no two edges intersect. A plane graph is a particular planar embedding
of a planar graph. We use v(G) to denote the number of vertices, e(G) the number of
edges, f (G) the number of faces, respectively, of a plane graph G. A signed graph is
a graph each of whose edges is labeled with a sign (+ or −). A signed graph is called
positive (resp. negative) if each of its edge receives a positive (resp. negative) sign.

A graph G = (V, E) is said to be bipartite if V can be divided into two nonempty
subsets V1 and V2 with V1 ∪ V2 = V and V1 ∩ V2 = ∅ such that for every edge
e ∈ E , one end-vertex of e belongs to V1 and the other end-vertex of e belongs to
V2. It is well known that a graph G is bipartite if and only if G does not contain a
circuit of odd length [39]. A graph G is said to be even if each of its vertices has
even degree. A connected even graph is the so-called Eulerian in [39]. Let G be a
connected even plane graph. The planar dual of a plane graph G is a graph that has
a vertex corresponding to each face of G, and an edge joining two neighboring faces
for each edge in G. We shall denote by G∗ the planar dual of G. There is a natural
bijection between edges of G and edges of G∗. When G is signed, G∗ will also be
signed but with the sign of each corresponding edge reversed. The following lemma
is a folklore [see Excise 9.2.3 (b) of [39]], for the proof, please see [43].

Lemma 2.1 Let G be a connected plane graph. Then G is even if and only if G∗ is
bipartite.

A knot is a simple closed piecewise linear curve in Euclidean 3-space R3. A link
is the disjoint union of finite number of knots; each knot is called a component of
the link. We take the convention that a knot is a one-component link. We can always
represent links in R

3 by link diagrams in a plane, that is, regular projections with a
short segment of the underpass curve cut at each double point of the projection. A
link diagram is said to be alternating if over- and under-crossings alternate as one
travels the link (crossing at the crossings). A link is said to be alternating if it has an
alternating link diagram. A nugatory crossing of a link diagram is a crossing in the
diagram so that two of the four local regions at the crossing are part of the same region
in the larger diagram. A reduced diagram is one that is connected and does not contain
nugatory crossings.

2.2 Links and graphs

The 1–1 correspondence between link diagrams and signed plane graphs has been
known for more than one hundred years. It was one of the methods used by Tait and
Little in the late nineteenth century to construct a table of knot diagrams of all knots
starting with graphs with a relatively small number of edges and then increasing the
number of edges [40]. To describe this correspondence, we first recall themedial graph
of a plane graph.

The medial graph M(G) of a non-trivial connected plane graph G is a 4-regular
plane graph obtained by inserting a vertex on every edge of G, and joining two new
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Fig. 1 The correspondence
between a crossing and a signed
edge e e

vertices by an edge lying in a face of G if the vertices are on adjacent edges of the
face; if G is trivial, its medial graph is defined to be a simple closed curve surrounding
the vertex (strictly, it is not a graph); if a plane graph G is not connected, its medial
graph M(G) is defined to be the disjoint union of the medial graphs of all its connected
components.

Given a signed plane graph G, we first draw its medial graph M(G). To turn M(G)

into a link diagram D(G), we turn the vertices ofM(G) (i.e., edges ofG) into crossings
by defining a crossing to be over or under according to the sign of the edge as shown in
Fig. 1. Conversely, given a connected link diagram D, shade it as in a checkerboard so
that the unbounded face is unshaded. Note that such a shading is always possible, since
link diagrams can be viewed as 4-degree plane graphs, see Exercise 9.6.1 ofvBondy.
We then associate D with a signed plane graph G(D) as follows: For each shaded
face F , take a vertex vF , and for each crossing at which F1 and F2 meet, take an edge
(vF1, vF2) and give the edge a sign also as shown in Fig. 1. If a link diagram D is not
connected, its corresponding signed plane graph G(D) is defined to be the disjoint
union of the signed plane graphs of all its connected components.

Under the 1–1 correspondence described above, there is also a 1–1 correspondence
between edges ofG and crossings of D(G). Note that D(G) is alternating if and only if
G is positive or negative. If we take the sphere S2 for the plane, then D(G) = D(G∗).

2.3 Jones and Tutte polynomials

The Kauffman bracket polynomial 〈D〉 of an unoriented link diagram D was intro-
duced by Kauffman in [38]. See also [44,45]. It not only provides a simple state model
for the Jones polynomial [37] but also connects knot theory to statistical mechan-
ics [46]. The Kauffman square bracket polynomial [D] = [D](A, B, d) ∈ Z[A, B, d]
of a link diagram D can be defined by the following two rules:

1. The Kauffman square bracket polynomial of a diagram consisting of n disjoint
simple closed curves in the plane is dn−1;

2. For any crossing c of the link diagram D, [D] = A[DA
c ]+ B[DB

c ], where DA
c and

DB
c are link diagrams obtained from D by opening the A-channel and B-channel

of the crossing c, respectively (see Fig. 2).

The Kauffman bracket polynomial 〈D〉 ∈ Z[A, A−1] of a link diagram D is related
to the Kauffman square bracket polynomial [D] by

〈D〉 = [D](A, A−1,−A2 − A−2). (1)

Let D be an oriented link diagram. The writhe w(D) [resp. self-writhe s(D)] of D is
defined to be the sum of signs of the crossings (resp. self-crossings) of D. See Fig. 3

123



1796 J Math Chem (2015) 53:1791–1807

c

Fig. 2 A crossing c of a diagram D (left), DA
c (center) and DB

c (right) obtained from D by opening the
A-channel and B-channel of the crossing c

Fig. 3 Rules for signs of
crossings of an oriented link
diagram

1 1

for rules of signs of crossings and Fig. 11 for examples of self-crossings. Note that the
sign of a self-crossing is actually independent of the orientation of the link diagram.

The relation between the Jones polynomial and Kauffman bracket polynomial is
represented as follows.

Theorem 2.2 [38,41,44]

(1) Let D be an oriented link diagram. Let F(D)(A) = (−A3)−w(D)〈D〉. Then the
polynomial F(D) in the variable A is an invariant of ambient isotopy and

VD(t) = F(D)(t−1/4),

where VD(t) is the Jones polynomial of the link D represents.
(2) Let D be an unoriented link diagram. Let U (D) = (−A3)−s(D)〈D〉. Then the

polynomial U (D) in the variable A is an invariant of ambient isotopy.

It is well known that the writhe (resp. self-writhe) computed from a reduced alter-
nating link diagram is a chirality detector. However, there exist many chiral links with
diagrams having writhe (resp. self-writhe) 0. For such links, the polynomials F(D)

and U (D) may have the ability to detect their chirality. We have

Theorem 2.3 [38,41,44]

(1) If an oriented link D is achiral, then F(D)(A) = F(D)(A−1). This implies that
if the sum of the maximum degree and the minimum degree of the 〈D〉 is not equal
to 6w(D), then the oriented link D is chiral.

(2) If an unoriented link D is achiral, then U (D)(A) = U (D)(A−1). This implies
that if the sum of the maximum degree and the minimum degree of 〈D〉 is not
equal to 6s(D), then the unoriented link D is chiral.

Based on the correspondence between link diagrams and signed plane graphs,
the Kauffman bracket polynomial was converted to the Tutte polynomial of signed
graphs by Kauffman [42,44]. Let G be a signed graph. We denote by T (G) the Tutte
polynomial of G. When G is a signed plane graph, the Tutte polynomial of G equals
exactly the Kauffman bracket of the the corresponding D(G), that is
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Fig. 4 Antiparallel and parallel
orientations

Theorem 2.4 [42,44] Let G be a signed plane graph, D(G) be the corresponding
link diagram. Then

T (G) = 〈D(G)〉.

Theorem 2.5 [47,48] Let G be a reduced positive graph. Let v = v(G), e = e(G)

and f = f (G). Then the highest and lowest degrees of T (G) are 3e − 2v + 2 and
−e − 2v + 2, respectively.

3 Our chiral criteria

In this section, we provide several mathematical criteria for determining the chirality
of oriented and unoriented links.

3.1 Oriented case

This subsection concerns DNA polyhedral links. The following lemma is no more
than an observation.

Lemma 3.1 Let G be a connected positive (resp. negative) plane graph. Then

(1) G is bipartite ⇐⇒ D(G) has an antiparallel orientation as shown in Fig. 4 (1).
Under this orientation, w(D(G)) = −e(G) [resp. w(D(G)) = e(G)].

(2) G is even ⇐⇒ D(G) has a parallel orientation as shown in Fig. 4 (2). Under
this orientation, w(D(G)) = e(G) [resp. w(D(G)) = −e(G)].

Proof By Lemma 2.1 and Fig. 5, it suffices to prove (1). If G is bipartite, then the
vertices of G can be divided into two sets M and N (see Fig. 6, left) such that each
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Fig. 5 By taking the dual of G,
antiparallel orientation of G
becomes parallel orientation of
G∗

( )D G

Fig. 6 A bipartite graph G produces a link D(G) with an antiparallel orientation

Fig. 7 The link corresponding
to a non-bipartite graph G has
no antiparallel orientations

edge has an end-vertex inM , the other in N . Assign an anticlockwise (resp. clockwise)
orientation to every vertex in M (resp. N ), so that the link travels around the vertex
in this direction. Then we obtain an antiparallel orientation of D(G) as shown in the
right of Fig. 6. If G is not bipartite, then D(G) will have no antiparallel orientations,
as shown in Fig. 7, because the orientation of the cycle around the vertex a can not
be selected. As shown in Fig. 4 (1) (resp. (2)), if G is positive, then each crossing of
D(G) with antiparallel (resp. parallel) orientation is negative (resp. positive). Hence,
if G is positive, we have w(D(G)) = e(G) when G is even and w(D(G)) = −e(G)

when G is bipartite. The case for the negative G can be dealt with similarly. ��

Theorem 3.2 Let G be a reduced non-trivial plane graph, positive or negative. Then

(1) If G is bipartite, then the link D(G) with the antiparallel orientation is chiral.
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(2) If G is even, then the link D(G) with the parallel orientation is also chiral.

Proof The writhe of a reduced alternating oriented diagram is an invariant of the
oriented link it represents [27,49,50]. Thus, if the writhe of a connected reduced
alternating oriented diagram is different from zero, then the oriented link it represents
is chiral. Theorem 3.2 follows directly from Lemma 3.1. ��

3.2 Unoriented case

This subsection concerns protein and molecular links that are usually considered to
be unoriented.

In general the self-writhe of an unoriented link diagram is not easy to determine.
For a special family, we shall prove that they have self-writhe 0. Let G be a plane
graph. Let d(v) (resp. d( f )) be the degree of the vertex v (resp. the face f ) of G. We
denote by vi (resp. fi ) the number of vertices (resp. faces) of degree i .

Lemma 3.3 Let G be a connected, even, bipartite, non-trivial plane graph. Then
v2 + f2 ≥ 4.

Proof Let v, e and f be the number of vertices, edges and faces of G, respectively.
Recall that a non-trivial bipartite graph has no circuits of odd length. Then we have

v = v2 + v4 + v6 + v8 + · · ·
f = f2 + f4 + f6 + f8 + · · · .
e = 1

2

∑

v∈V
d(v) = v2 + 2v4 + 3v6 + 4v8 + · · ·

e = 1

2

∑

f ∈F
d( f ) = f2 + 2 f4 + 3 f6 + 4 f8 + · · · ,

where F is the set of faces (including the unbounded face) of G. By Euler’s for-
mula [39], we have

4 = 2v + 2 f − 2e

= 2(v2 + v4 + v6 + v8 + · · · ) + 2( f2 + f4 + f6 + f8 + · · · )
−(v2 + 2v4 + 3v6 + 4v8 + · · · ) − ( f2 + 2 f4 + 3 f6 + 4 f8 + · · · )

= v2 + f2 − (v6 + 2v8 + · · · ) − ( f6 + 2 f8 + · · · ).

Thus the lemma holds. ��
Theorem 3.4 Let G be a connected, even, bipartite plane graph, positive or negative.
Then no crossing of D(G) is a self-crossing. In particular, we have s(D(G)) = 0.

Proof Weshall prove this by induction on e(G), the number of edges ofG. If e(G) = 0
the theorem holds trivially since D(G) has no crossings. If e(G) = 2, then D(G) is
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Fig. 8 G′ with a face of degree 2 with boundary edges e1, e2 and G = G′ − e1 − e2 (up), and their
corresponding link diagrams (down)

the Hopf link, the theorem holds clearly. Assume as an inductive hypothesis that the
theorem holds for all connected, even, bipartite plane graph with e(G) < k. Let G ′ be
a connected, even, bipartite plane graph with e(G ′) = k. There are two cases.
Case 1 f2(G ′) > 0. This means that G ′ has a face of degree 2 with edges e1, e2 as
shown in Fig. 8 (right). Let G = G ′ − e1 − e2 as shown in Fig. 8 (left).

If G is not connected, we suppose that G = G1 ∪ G2. By induction hypothesis,
D(G1) and D(G2) both have no self-crossings. The two red arcs in Fig. 8 (left and
down) belong to different components of the corresponding link, and hence D(G ′)
has no self-crossings. See Fig. 8 (right and down).

IfG is connected,we only need to show that the two red arcs in Fig. 10 (right) belong
to different components of the corresponding link, since D(G) has no self-crossings
by the induction hypothesis. Otherwise, suppose that the two red arcs belong to a single
component of the corresponding link. Note that the component of D(G) is in fact a left-
right path ofG (an example illustrating the notion is shown in Fig. 9), so the component
must go through an even number of edges of G, since G is bipartite and hence has no
odd circuits. Let l(a · · · c) and l(b · · · d) be the length of left-right path corresponding
to the red component from a to c and from b to d respectively (see Fig. 10). Since
G is bipartite, either l(a · · · c) and l(b · · · d) are both even or they are both odd.
Note that G and its dual G∗ correspond to the same diagram, i.e. D(G) = D(G∗).
The red component will correspond the left-right paths a∗, . . . , c∗, d∗, . . . , b∗ in G∗.
Furthermore, a∗, . . . , c∗ constitutes a circuit of G∗. Since G is even, we know G∗
is bipartite, and hence the length of the circuit a∗, . . . , c∗ is even. Thus, l(a · · · c)
and l(b · · · d) are both even. Therefore, a, . . . , c, e1 will be an odd circuit of G ′, a
contradiction.
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(a) (b)

Fig. 9 a Two left-right paths (red and blue) of a plane graph; b the link diagram corresponding to the plane
graph which consists of two components (red and blue) (Color figure online)

Fig. 10 G with edges labeled a, b, c, d (left); D(G) and the dual G∗ with edges labeled a∗, b∗, c∗, d∗
(right)

Case 2. f2(G ′) = 0.
By Lemma 3.3, v2(G ′) > 0. Note that D(G ′) = D(G ′∗), we only need to consider

the dual graph G ′∗ of G ′ which is also connected, even, bipartite plane graph, but has
a face of degree 2. ��

There exist non-even, bipartite plane graphs whose corresponding link diagram has
self-crossings. There are also even, non-bipartite plane graphs whose corresponding
link diagrams have self-crossings. Two such examples are shown in Fig. 11 and edges
corresponding to self-crossings are thickened.

Theorem 3.5 Let G be a reduced plane graphwith s(D(G)) = 0, positive or negative.
Then if e(G) �= 2v(G) − 2, then the unoriented link D(G) represents is chiral. In
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Fig. 11 A non-even, bipartite plane graph (left); an even, non-bipartite plane graph (right). Their corre-
sponding link diagrams both have self-crossings

particular, when G is an even, bipartite, reduced plane graph with e(G) �= 2v(G)−2,
the unoriented link D(G) represents is chiral.

Proof The first part follows from Theorems 2.3 (2) and 2.5. The second part then
follows from Theorems 3.4 and 2.5. ��

4 Analyses and results

In this section we shall show that a type of DNA polyhedral link, a type of protein
polyhedral links and a type of molecular links are both topologically chiral. Note that
we shall ignore protein sequence and use the orientation of the two backbone strands
of dsDNA to orient DNA polyhedral links. Thus we consider DNA polyhedral links as
oriented links and protein polyhedral links as unoriented ones. Note that topological
chirality always implies chemical chirality. We obtain that the two types of DNA
polyhedra and protein polyhedra are both (chemical) chiral. In fact, the chirality of
double crossover octahedra link has been revealed by cryogenic electron microscopy
(cryoEM) [15].

4.1 Double crossover DNA polyhedral links

In recent years, chemists and biologists, in laboratory, designed and synthesized some
fancy double crossover DNA polyhedra, such as DNA tetrahedron [16], cube [17],
octahedron [15], dodecahedron[16], icosahedron [18] and buckyball [16], by cover-
ing each vertex of degree n of the polyhedron by “n-point starmotif (tiles)” and through
sticky-end association between the tiles. The “n-point star motif” has an n-fold rota-
tional symmetry and consists of 2n + 1 single strands: a long repetitive central DNA
strand (colored red and yellow), n identical medium DNA strands (colored green) and
n identical short DNA strands (colored black). The colored yellow part at the center of
the motif represents n unpaired DNA single-strands whose lengths can be adjusted to
change bending degree of the whole structure. See Fig. 12. In Fig. 13b, using 8 “3-star
points” to cover every vertex of the cube graph in Fig. 13a, the resultant links are
4-turn DNA cube and 4.5-turn DNA cube, called double crossover cubic links [17].

123



J Math Chem (2015) 53:1791–1807 1803

Fig. 12 3-point star, 4-point star and 5-point star

Note that along each edge, there are two anti-parallel DNA duplexes [15], thus we
view double crossover polyhedral links as oriented links. See also [19,51]. Their braid
indices have been determined in [52,53], which, however, are useless for detecting
chirality.

In the following, we first consider the chirality of 4-turn DNA cube. In a similar
way, the chirality of 4.5-turn DNA tube can also be illustrated.

In general, the plane graph G corresponding to a double crossover polyhedral link
based on the polyhedron P can be obtained from the 1-skeleton of the polyhedron P
by the following steps:

Step 1: Truncating the polyhedron P , i.e. cutting each corner of the polyhedron P ,
we obtain a polyhedral graph Q.

Step 2: Flattening edges of Q corresponding to edges of P , i.e. converting a single
edge into two parallel edges, we obtain a plane graph H .

Step 3: Subdividing each edge of H by inserting three vertices, we obtain the plane
graph G corresponding to the double crossover polyhedral link based on the
polyhedron P .

An example is given in Fig. 14. To obtain G, every edge of H is replaced by a
path of length 4, so G has no odd circuits and hence G is bipartite. According to
Theorem 3.2 (1), we know that all DNA double crossover 4-turn polyhedral links are
topologically chiral.

According to Ref [17], for a double crossover 4.5-turn polyhedral links L(P), the
polyhedron P must be a bipartite. So, in a similar way, according to Theorem 3.2 (1),
DNA double crossover 4.5-turn polyhedral links are topologically chiral.

4.2 3-regular protein polyhedral links

Nowwe consider protein polyhedra. By now, as far as we know, only one protein poly-
hedra has been found, that is HK97 capsid, a topologically linked protein catenane
in the mature empty capsid of the double-stranded DNA bacteriophage [22]. Moti-
vated by this discovery, Qiu et al. [54] developed a method of constructing polyhedral
links based on polyhedra by means of “three-cross curves and untwisted double-line”
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(a) (b)

(a) (b)

Fig. 13 a The cubic graph; b the double crossover DNA cubic link

(a) (b) (c)

Fig. 14 a The truncated cubic graph (Q); b its flattening (H ) and c subdivision (G)
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Fig. 15 The tetrahedral graph (up and left), 3-regular tetrahedral link (right) and its corresponding plane
graph (down and left)

covering in [24].We shall call them 3-regular protein polyhedral links.We shall ignore
protein sequence and view protein polyhedral links as unoriented links.

Let P be a polyhedron of degree 3. Let L(P) be the polyhedral link based on P
constructed by means of “three-cross-curves” covering. See Fig. 15 for an example.
We have two observations:

(1) Each face of P corresponds to a non-intersecting component of L(P) [see Fig. 15
(right) for an example], hence the self-writhe of L(P) is zero.

(2) The plane graph corresponding to L(P) is exactly the medial graph M(P) of the
polyhedral graph of P (see Fig. 15), hence v(M(P)) = e(P) and e(M(P)) =
4v(M(P))

2 = 2v(M(P)) = 2e(P).

By Theorem 3.5, L(P) is topologically chiral. Since chiral unoriented links must
be also chiral as oriented links. Even if we consider protein sequence and view protein
polyhedral links as oriented ones, they are still chiral.

5 Summary and discussions

In this paper, we present a criterion for oriented alternating links to be chiral; that
is, if they are formed from a reduced non-trivial bipartite plane graphs and they have
an antiparallel orientation, then they are topologically chiral as oriented links. This
criterion is enough to deal with double crossover DNA polyhedral links with 4 turns
(resp. 4.5 turns) or more generally, even turns (reps. odd turns). We noted that DNA
double crossover molecules were modelled in 1993 [19]. We also present a criterion
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for unoriented links with self-writhe 0; that is, if they are formed from a reduced plane
graph with e(G) �= 2v(G)−2, then they are topologically chiral. This criterion is used
to obtain the chirality of 3-regular protein polyhedral links. In theory, it is interesting
to characterize reduced plane graphs whose corresponding link diagrams have zero
self-writhes. This is not solved and we only prove the self-writhe of an unoriented link
formed from a connected, even , bipartite plane graph is zero.

We considered the double crossover 4-turn and 4.5-turn DNA polyhedra in this
paper. Our criterion for DNA polyhedral links can be used to deal with cycle-crossover
polyhedral links introduced in [55]. In addition, as a theoretically possible synthesizing
method, for any k ≥ 3, “k-crossing curves” covering was proposed in [25,56,57] to
construct protein polyhedral links. We shall study chirality of such polyhedral links
in the subsequent paper.
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